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Recently a naive picture of the resonance theory has been revaluated from 

the graph and combinatorial theoretical points of view. 
l-7 

For example, for a 

group of aromatic hydrocarbon isomers the number of the Kekul6 structures, or 

the structure count, is known to be a good index for representing the resonance 

energy. A number of methods for enumerating the number of the Kekul6 structures 

have been proposed. 
5,8-13 

There have also been proposed various quantities 3,7,14 

characterising the local and overall resonance stabilisation in an aromatic 

hydrocarbon molecule in order to explain the empirical rules such as that pro- 

posed by Clar 
15 

on the structure and stability relationship. In this preliminary 

report a new technique "sextet polynomial" is introduced for a systematic enumer- 

ation of the Kekule structures of aromatic hydrocarbons and it is shown that by 

the use of this polynomial various resonance theories independently proposed are 

found to be related to each other. 

Let us confine ourselves to the Kekul6 structures of aromatic hydrocarbons 

with an even number of carbon atoms, each of which supplies one s-electron to 

the network or graph G. In a given Kekul6 structure an aromatic sextet (abbrevi- 

ated as a sextet) is defined as a set of three double bonds circularly conjugated 

as in either of the two Kekul6 structures of benzene and is represented by a 

circle.15 According to the Clar's definition no two sextets can have a common 

bond. Namely, if ring 1 in structure I is chosen as a sextet and represented as 

in II, ring 2 is not allowed to have a circle even though it can form a sextet 

at the sacrifice of ring 1 as in III. 

From II and III it is shown that rings 1, 4, and 5 and rings 2, 4, and 5 are, 

respectively, mutually resonant with each other. On the other hand, ring 3 can 
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be chosen as a sextet by itself but can not be resonant with ring 1 (See IV). 

Define the resonant sextet number r(G,k) for graph G as the number of ways 

in which k disconnected but resonant sextets are chosen from G, r(G,O) being 

defined as unity for all the cases. Except for very few cases as the central 

ring in perylene, any ring in an aromatic hydrocarbon can be chosen as a sextet 

in one or more Kekuld structures. Then r(G,l) is equal to the number of hexagons 

for almost all the cases. For dibenz[a,c]anthracene the r(G,2) value is obtained 

as five, i.e., there are five pairs of resonant sextets as (1,4), (1,5), (2,4), 

(2,5), and (4,5). The two structures II and III give r(G,3)=2. 

The sextet polynomial B,(X) is defined as 

BG(X) = y r(G,k) Xk . (1) 
k=O 

For dibenz[a,c]anthracene we get BG(X)=1+5X+5X2+2X3 . Note that the sum of the 

coefficients of the sextet polynomial, 13, is equal to the number of the Kekuld 

structures of this hydrocarbon. This is always the case for smaller members Of 

the aromatic hydrocarbons as shown in Table. It can be proved that for a cata- 

fusene, i.e., a polycyclic aromatic hydrocarbon in which no three hexagons have 

a common carbon atom, the value BG(l) is exactly equal to the number of the 

Kekul6 structures, K(G), or the structure count, SC(G), 

BG(l) = K(G) = SC(G). (2) 

Also for such a perifusene so slender as not to contain the coronene skeleton 

the relation (2) is exactly obeyed. For coronene we have BG(X)=1+7X+9X2+2X3 

and BG(1)=19, whereas K(G)=20. The discrepancy can be explained and corrected by 

introducing the idea of super-ring, a ring composed of six hexagons forming the 

peripheral structure of coronene, which gives an additional term, X, to BG(X) 

(See Table). Useful recursion formulae and mathematical relations are found for 

obtaining the sextet polynomial of larger graphs but will not be explained here. 

Note, however, that a set of quantities, r(G,k), BG(X), and K(G), are in 

parallel with our previously proposed quantities, i.e., non-adja;;nt number, 

p(G,k), Z-counting polynomial, Q,(X), and topological index, ZG. 

According to Clar 15 the Kekuld structure with the largest number of sextets 

is representative of the electronic structure of the ground state of a polycyclic 

hydrocarbon, and the stability increases with the number of sextets, which is 

nothing else but the largest exponent m to X in BG(X) (See Table). 

Next let us differentiate BG(X) with respect to X. The value BIG(l) is 

turned out to be equal to the value lyi proposed by Herndon and Ellzey3 as the 

sum of the numbers of the Kekuld structures for the subgraph GORi 
17 derived from 

G by deleting hexagon Ri together with all the bonds adjacent to Ri, 

B'G(1) = 1 K(GORi) = 1~~. 
i 

(3) 
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1 + 4x 

1 + 4x + 2x2 

1 + 4x + 3x2 

1 + 4x + 3x2 + x3 

1 + 4x + x2 

1 + 5x 

1 + 5x + 3x2 

1 + 5x + 4x2 

1 + 5x + 5x2 

1 + 5x + 5x2 + x3 

1 + 5X + 6X2 + X3 

1 + 5x + 5x2 + 2x3 

1 + 5X + 6X2 + 2x3 

1 + 5x + 3x2 

1 + 4x + 4x2 

1 + 5x + 4x2 + x3 

1 t 7x + 9x2 + 2x3 
I 

* 1 + 8X + 9x2 + 2x 3 

Q(X) 
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3 

3 + 2x 

4 

4 + 4x 

4 + 6X 

4 + 6X + 3X2 

4 + 2x 
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5 + 6X 
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8 + 18X + 6X2 
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BG(l) B',(l) m 

2 1 
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4 3 

5 5 

5 4 

7 8 

8 10 

9 13 

6 6 

6 5 

9 

10 

11 

12 

13 

13 

14 

9 

9 

11 

19 

20 

11 

13 

15 

18 

20 

21 

23 

11 

12 

16 

31 

32 

1 

1 
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2 
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2 
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3 

3 

3 

2 

2 

3 

3 
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* Corrected with the super-ring. Note that the corrected BIG(l)=32 also 

gives the correct lyi value. Refer to Ref.18. 
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For dibenz[a,clanthracene we have B'G(X)=5+10X+6X2 giving the value B'G(1)=21, 

which is also obtained from the K(GORi) values as in V. From the graph theo- 

retical standpoint the values K(GBR$'s for polyhexes are 

extensively tabulated. 
18 

Randid and Aihara14' independently proposed an idea of 

the index of local aromaticity (ILA) and overall index of 

aromaticity (OIA) expressed by the use of our notations as 

ILAi = 2 K(GEIR$/K(G) (4) 

om = 2 l CK(GQR~)/K(G)) = 2 BIG(l)/~G(l). (5) 
i 

Thus many of the resonance theories independently proposed are shown to be 

mathematically related to each other through the sextet polynomial. Proofs and 

details will be published elsewhere. 
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